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Abstract—Successful first synthesis of optically pure (+)- and (�)-aerothionins (1) from the racemic spiroisoxazoline derivative 8 has
been accomplished. The absolute configuration of natural (+)-1 was determined by comparison of (+)- and (�)-8 with related
derivatives.
� 2005 Elsevier Ltd. All rights reserved.
Up to now, several spiroisoxazoline natural products
have been isolated from marine origins (Fig. 1).1 Among
them, dimeric natural products carrying two spiroisox-
azoline units, such as aerothionin (1),2 homoaerothionin
(2), caissarin B (3),3 fisturalin 3 (4),4 calafianin (5),5 and
their congeners,6 were reported to show significant bio-
activity, mainly antimicrobial and cytotoxic activities. In
addition, antihistamine activity of archerine (6)7 and K,
Na-ATPase inhibitory activity of ianthesin C (7)8 were
reported.

Synthetic studies on these natural products have been
carried out by several groups.9 The first total synthesis
of aerothionin (1), produced by the amidation of (±)-8
with the corresponding diamine, was reported by our
group,10 although diastereomeric separation of natural
1 and its diastereoisomer was unsuccessful. Asymmetric
synthesis of the spiroisoxazoline unit 8 (70–80% ee) was
reported by Hoshino et al.,11 although separation of dia-
stereomers derived from 8 carrying insufficient optical
purity was unsuccessful. From the viewpoint of biolog-
ical investigation, acquisition of completely pure dimeric
spiroisoxazoline compounds without contamination of
their diastereoisomer is essential for evaluation of enan-
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tiomerical difference. We describe herein the synthesis of
optically active spiroisoxazoline 8 and its synthetic
access to optically pure (+)- and (�)-1.

As reported previously, synthesis of the racemic spirois-
oxazoline compound (±)-8 was efficiently achieved by
electrochemical oxidation of 9, followed by Zn(BH4)2
reduction of 10 (Scheme 1).12

The coupling reaction of (±)-8 with several chiral
reagents was attempted to produce a chromatographically
separable diastereomeric mixture. After repeated inspec-
tion, it was observed that camphanic acid esters 11 and
12, produced by esterification with (�)-camphanic chlo-
ride, were easily separable by silica gel chromatography
(Scheme 2).13

The optically active spiroisoxazoline compounds (+)-
and (�)-8 were successfully obtained by solvolysis of
11 and 12 under basic conditions (Scheme 3). Their
optical purity was confirmed by chiral HPLC analysis
(Daicel CHIRALPAK AD-H: 100% EtOH) of (+)-
and (�)-10, which were produced by the Dess–Martin
oxidation of (+)- and (�)-8 (Scheme 4). No observation
of the corresponding enantiomeric isomers on the
HPLC chart indicated that both enantiomers possess
complete optical purity.14 To determine their absolute
stereochemisty, (+)- and (�)-8 were submitted to acid
hydrolysis, followed by cyclization to yield (+)- and
(�)-13, optical rotations {½a�23D +322.8 (c 1.0, CHCl3)
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Figure 1. Structures of dimeric spiroisoxazoline natural products.

Scheme 1. Synthesis of spiroisoxazoline (±)-8.

Scheme 2. Esterification of (±)-8 by (�)-camphanic chloride.
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and ½a�23D �320.6 (c 1.0, CHCl3)} of which were com-
pared with the reported data {½a�20D +202.8 (c 0.64,
CHCl3)}

15 (Scheme 3).16,17 Although the reported abso-
lute value of optical rotation was different from our
data, the plus sign of the reported 13 indicated that
the absolute configuration of (+)- and (�)-13 might be
as depicted in Scheme 3.

To obtain further structure proof, a synthesis of aerop-
lysinin-1 (14), the absolute configuration of which was



Scheme 5. Synthesis of optically active aeroplysinin-1 (14).

Scheme 3. Synthesis of optically active spiroisoxazoline 8.

Scheme 4. Derivation of 8–10 for optically purity analysis.
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determined by X-ray crystallographic analysis, was per-
formed by using (+)- and (�)-8, according to the same
procedure as described previously (Scheme 5).12b Con-
sequently, their optical rotations {(�)-14: ½a�23D �199.1
(c 0.5 acetone); (+)-14: ½a�23D +192.9 (c 0.5 acetone)}
were identical with the reported data {(�)-14: [a]D
�198 (c 0.5 acetone); (+)-14: [a]D +182 (c 0.5
acetone)}.18

Finally, optically pure (+)- and (�)-1 were successfully
synthesized by condensation of (+)- and (�)-8 with 1,4-
diaminobutane10 (Scheme 6). The 1H NMR data of the
synthetic 1 was superimposable to the reported data.2

Previously, Rinehart reported the absolute configura-
tion of natural 1 {[a]D +210 (c 1.7, MeOH)}2c by
means of an X-ray crystallographic analysis, together
with its circular dichroism.19 Our synthetic samples
exhibited the optical rotations {½a�22D �205.2 (c 0.5,
MeOH) and ½a�22D +203.8 (c 0.5, MeOH)} and the abso-
lute configuration of 1 should be as described in
Scheme 6, which definitely supported the report by
Rinehart.

In conclusion, the optically active spiroisoxazoline units
(+)- and (�)-8 were produced, and the synthesis of (+)-
and (�)-1 without contamination of its diastereomer
was unambiguously achieved. By this investigation, the
absolute configuration of 1 was synthetically deter-
mined. This investigation will open up a synthetic access
to other dimeric spiroisoxazoline natural products, and
their biological profiles.



Scheme 6. Synthesis of optically active aerothionin (1).
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